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a b s t r a c t

Three graph theoretical statistics are considered for the problem of estimating the intrinsic
dimension of a data set. The first is the ‘‘reach’’ statistic, r j,k, proposed in Brito et al.
(2002) [4] for the problem of identification of Euclidean dimension. The second, Mn, is the
sample average of squared degrees in the minimum spanning tree of the data, while the
third statistic, Uk

n , is based on counting the number of common neighbors among the k-
nearest, for each pair of sample points {Xi, Xj}, i < j ≤ n. For the first and third of these
statistics, central limit theorems are proved under general assumptions, for data living in
an m-dimensional C1 submanifold of Rd, and in this setting, we establish the consistency
of intrinsic dimension identification procedures based on r j,k and Uk

n . For Mn, asymptotic
results are provided whenever data live in an affine subspace of Euclidean space. The
graph theoretical methods proposed are compared, via simulations, with a host of recently
proposed nearest neighbor alternatives.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

In the statistical analysis of complex data sets, it is frequently the case that data points are represented in a high
dimensional Euclidean space, Rd, but the data actually live in an m-dimensional manifold, with m ≪ d. This is the case,
for instance, when one takes a set of digital images of the same subject. Thinking of black and white images, for simplicity,
each image is coded by a very high dimensional vector, in which each coordinate represents the light intensity in a pixel,
and the number of pixels may be 400 × 600 or more. Still, if we represent each image by the point in R3 from where it was
taken, knowledge of this three dimensional representation will be enough for understanding and classification of the set
of pictures. Actually, in this example, depending on how the pictures are taken, the value of m could be 1, 2 or 3. Similar
situations arise in other image analysis applications, in the analysis of text and of genetic data, and in most cases, the value
of m might not be as obvious as in our example. Several authors in the artificial intelligence literature have argued about
the convenience of having methods to find automatically, whenever possible, a low-dimensional manifold representation
of high dimensional data [2,3,7,25,27,28,30].

Methods for the representation of high dimensional data in a lower dimensional manifold are termedmanifold projection
methods. Two popular suchmethods are Isomap, of Tenenbaum, de Silva and Langford [30] and the Locally Linear Embedding
method of Roweis and Saul [25]. In these references, it is suggested that the intrinsic dimension of the data can be ‘‘guessed’’
by observing the decrease in error (in the approximate representation) as the value ofm varies, as was traditionally done in
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the context of Multidimensional Scaling. A more precise initial estimation of m, of low computational cost, can be of great
help in the application of manifold projection methods.

In the present article, as in [22], it will be understood that though data are given in Rd, they actually live in an m-
dimensional, C1 submanifold M of Rd,m ≤ d, endowed with the subset topology, and that the goal is the estimation of
the dimensionm from an i.i.d. sample.

Various nearest-neighbor methods attempting to estimate the value of m have appeared recently in the statistical and
artificial intelligence literature. Someof the ideas behind thesemethods can be traced to Pettis et al. [23] andGrassberger and
Procaccia [11]. With the brief description of these methods we start introducing notation that will be used throughout. Let
Xn := {Xi}

n
i=1 denote the i.i.d. sample. The dimension estimator of Grassberger and Procaccia [11] is based on the U-statistic

which computes the fraction of data pairs, Xi, Xj satisfying ∥Xi − Xj∥ < r , for positive r . Secondly, let Dk(Xi) := Dk(Xi, Xn)

be the distance from the sample point Xi to its k-th nearest neighbor in the sample. Denoting Dk the sample average of
these distances, for each k in a given range, the nearest neighbor dimension estimator of Pettis et al. [23] is based on plotting
log(Dk) against log(k) and estimating the slope of the plot. Thirdly, Kegl [14] suggests using sample estimators of the packing
number corresponding to the dimension where the data live, an idea motivated on the fast variation of packing numbers
with dimension. The difficulty with this approach is that precise estimation of the packing number is, computationally, a
very hard problem, and in practice one has to work with rather crude approximations.

Neither of these threemethods provides a direct estimation of intrinsic dimensionm, but rather its valuemust be deduced
indirectly, from the slope of a line, for instance. Levina and Bickel [17], on the other hand, propose a ‘‘maximum likelihood’’
estimator of intrinsic dimension, arguing that, asymptotically, the expected value of the statistic

m̂k(Xi) :=


1

k − 2

k−1
j=1

log
Dk(Xi)

Dj(Xi)

−1

(1)

is the intrinsic dimension of the data. Thus, one expects that the average over the sample, namely mk := n−1n
i=1 m̂k(Xi),

is an asymptotically unbiased estimator of the intrinsic dimension. If k ≥ 4 and if the data have a density which is bounded
away from zero and infinity on a subset of a C1 submanifold of Rd, m ≤ d, then Theorem 2.1 in [22] establishes that mk
converges in probability to the intrinsic dimension m, as the sample size n tends to infinity. (If k ≥ 11 then mk converges
a.s., as n → ∞, to the intrinsic dimension.) Theorem 4.3 in [3] establishes a central limit theorem for mk as n → ∞, for
data in an affine subspace of Rd, whereas for data belonging to a manifold, Theorem 2.1 in [22] establishes a central limit
theorem for mk, conditioned on nearest neighbor distances being not too large. Levina and Bickel carry out comparisons
of their procedure against the correlation dimension estimator of Grassberger and Procaccia [11] and the nearest-neighbor
estimator of Pettis et al. [23], and conclude thatmk has a better performance.

Costa, Girotra and Hero [5] propose a method based on the total (power) length of the k-nearest-neighbor graph, namely

Lγ ,k := Lγ ,k(Xn) =

n
i=1

k
j=1

Dj(Xi)
γ , (2)

where γ is a power weighting constant. The use of (2) is justified by the following law of large numbers (Theorem 1 in [5]).
Assume that the data sample lives in anm-dimensional compact Riemannian submanifold M, of Rd, and is obtained from a
continuous distribution on M with density f bounded away from zero and infinity. Let g be the Riemannian metric defined
on M and let µg be the associated volumemeasure. If 1 ≤ γ ≤ m,m ≥ 2, and d′ is any positive integer, then, almost surely,

lim
n→∞

Lγ ,k

n(d′−γ )/d′
=


∞ if d′ < m

βm,γ ,k


M

f α(x)dµg(x) if d′
= m

0 if d′ > m

(3)

where α = (m − γ )/m and βm,γ ,k is a constant not depending on f , M or g .
From the above law of large numbers, [5] proposes a consistent bootstrap procedure for the estimation of m: Let

p1, . . . , pQ be integers in (0, n) and N a fixed fraction of n. For each l in 1, . . . ,Q , produce N samples of size pl, say X
j
pl ,

for j = 1, . . . ,N , by resampling with replacement from the original sample Xn. Fix l for the moment. For each bootstrap
sample X

j
pl , compute Lγ ,k(X

j
pl). Average the N values obtained to get Lpl , and let lpl = ln Lpl . After this calculus has been

done for each l, adjust the model

lpl = a ln pl + b + ϵl

by ordinary least squares. If â stands for the estimator of a in the model above, then m̂ = round(γ /(1 − â)) is a consistent
(as n goes to infinity) estimator ofm (see [5] for more details).

Farahmand, Szepesvári and Audibert [7] present a direct estimate of m, based on nearest neighbor distances. Given
r ∈ (0, ∞) and x ∈ Rd, let Br(x) denote the ball in Rd of radius r and center x. Define η(x, r) by

P[Xi ∈ Br(x)] =: η(x, r)rm.
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For small r, η(x, r) is an approximation to the data density at x ∈ M. For i ≤ n, let

m̂(Xi) :=
ln 2

ln(Dk(Xi)/D⌈k/2⌉(Xi))
and m̂ := round


1
n

n
i=1

(m̂(Xi) ∧ d)


, (4)

where a ∧ b := min(a, b). Under differentiability assumptions on the function η and regularity assumptions on M,
exponential bounds for the probability that m̂, in (4), differs fromm, for large enough n, are given in [7]. In particular, under
those assumptions, this estimator is consistent in probability for the dimensionm.

Recently, Sricharan, Raich, and Hero [28] have proposed another direct procedure for estimation ofm, using ideas related
to k-nearest neighbors density estimators. Partition the sample Xn into two disjoint sets, say Y and Z of respective sizes N
and M . For each Yi ∈ Y, let Rk(Yi) denote the distance from Yi to its k-th nearest neighbor in Z. For a positive γ , let

Tk(Xn) :=
γ

N

N
i=1

log Rk(Yi).

The ‘‘improved’’ estimator form proposed in [28] is

m̂ :=
γ (log(k2 − 1) − log(k1 − 1))

Tk2(Xn) − Tk1(Xn)
(5)

for k1 < k2. Although no theoretical results are given in [28] for the estimator (5), approximate formulas for the bias and
variance and a central limit theorem are stated for an associated estimator and it is argued that the behavior, in terms of
variance, of the improved version should be better than that of the associated statistic. Also, in [28] optimal criteria are
obtained for the choice of M,N, k1 and k2 in (5), but these criteria are of limited practical application since the formulas
obtained for the parameters depend on some unknown constants, including the dimensionm to be estimated.

In the following section we present the graph theoretical methods for intrinsic dimension identification to be discussed
here. Section 3 includes results of a Monte Carlo performance comparison of the graph theoretical methods with the k-
nearest neighbor methods of [5,7,17,28], described above. Section 4 provides some theoretical results that support the
methods introduced here, including central limit theorems for the ‘‘reach’’ statistic and the ‘‘mutual neighbors’’ statistic
of Section 2, assuming that the data live in a C1 manifold.

2. Graph theoretical methods

Since the series of papers of Friedman and Rafsky [8–10] it has been clear that graph theoretic methods offer a natural
way of dealing with non-parametric statistics in the multivariate setting. The article [24] gives a brief account of the
different applications of graph theoretic methods on a variety of statistical problems, including the two-sample problem,
outlier identification and clustering, among others. In this reference, or in any classical book on Graph Theory (for instance,
Harary, [12]) the reader can find the graph theoretic definitions required in what follows. Penrose and Yukich [19–22] as
well as [31] explain some of the main mathematical ideas that validate, asymptotically, these sorts of methods.

Starting from a d-dimensional data set Xn, or more precisely, from the corresponding interpoint distances, different
graphs can be built that establish connections (edges) between nearby sample points. Examples include the k-nearest-
neighbor graph,Gk, theminimumspanning tree graph and the sphere of influence graph,which are three types of ‘‘proximity
graphs’’; see Aldous and Shun [1]. For a description of the first two, the reader can look in the references of Friedman and
Rafsky [8–10], while the sphere of influence graph, has been studied in [19]. Once a proximity graphH has been constructed
from a data sample, we may abstract from the data and look at statistics which are functions only of graph theoretic
properties ofH , such as vertex degrees, vertex eccentricities, length of paths between vertices, diameter of the graph, and so
on. Procedures based on these types of statistics are what we call graph theoretic methods. Since the estimators of intrinsic
dimension of [5,7,17,28] require for their computation the actual values of the nearest neighbor distances, they do not fall
in the graph theoretic category. The main advantages of using graph theoretic methods are, in our opinion:

(i) Low computational cost. Most of the graphs considered in these methods and the statistics calculated from them can
be computed at a sub-quadratic cost, with respect to the sample size. See [8] and references therein.

(ii) Robustness. The construction of the graphs does not require exact knowledge of the interpoint distance. Only the
ordering among these distances is required. Thus, for data coming from a continuous distribution, there is an ϵ > 0
such that statistics based on these graphs are invariant if the data is perturbed by a noise component of Euclidean norm
less than ϵ. Small amounts of noise will thus not affect the analysis in an importantmanner, unless a significant fraction
of distance comparisons is altered.

(iii) Availability of theory. A number of theoretical tools exist for the study of properties of graph theoretic statistics,
including methods for proving laws of large numbers, central limit theorems and consistency of the corresponding
parameter estimators. See [19,22,31]. In many important problems, the graph theoretic procedures turn out to be
asymptotically non-parametric.
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Fig. 1. Average degree frequencies in MST.

In the context of Multidimensional Scaling, Brito, Quiroz and Yukich [4] propose a graph theoretical method for
identifying the Euclidean dimension of a data set. The method is based on the ‘‘reach’’ of data in the k-nearest neighbor
graph, defined as follows. Recall that in the k-nearest-neighbor graph, Gk := Gk(Xn) the vertex set is the sample Xn. For
x, y ∈ Xn, x ≠ y and j a fixed positive natural number, say that y can be reached in j steps from x, if there exists a path
v0, v1, . . . , vj in Gk with v0 = x and vj = y. The reach in j steps of vertex x ∈ Xn, rj,k(x, Xn), is the total number of vertices
that can be reached from x in j steps or less in Gk. The statistics considered in [4] is the average reach in j steps of points in
Gk, namely

r j,k(Xn) :=
1
n


x∈Xn

rj,k(x, Xn).

The intuition for considering the statistic r j,k(Xn) is that, as the dimension increases, there are more directions in which a
given sample point can find neighbors and, therefore, the amount of points reached in j steps in Gk, should increase with
dimension. For data living in Euclidean space, a law of large numbers for r j,k(Xn) is established in [4]. This result is extended
here to data living in a C1 submanifold of Rd and, in this context, a central limit theorem for r j,k(Xn) is given as well (see
Remark (ii) following Theorem 1 in Section 4). This leads to a consistency result for an estimator of intrinsic dimension based
on r j,k(Xn) (Theorem 4).

To introduce a second estimator of intrinsic dimension, let Tn := Tn(Xn) be theminimum spanning tree (MST) associated
to the sample Xn. Let deg(Xi) := degTn(Xn)(Xi) denote the degree of node Xi in Tn, that is, the number of Xj’s, j ≠ i, such that
{Xi, Xj} is an edge of Tn. Steele, Shepp and Eddy [29] showed that for data obtained from a continuous distribution on Rd,
the fraction of nodes with a given degree, j, in Tn, converges almost surely to a limit depending only on j and d. Fig. 1 shows
the average fractions of nodes with each given degree up to 7, for MSTs in dimension 2–8 for samples of size n = 1000
from the Uniform distribution on the unit cube. For each dimension, the averages are computed over 50 samples. We see, in
this figure, that the degree distribution in the MST is monotonically changing with dimension: As the dimension increases,
the number of leaves (nodes of degree 1) is increasing, as is the fraction of nodes with large degree (degree ≥4). Recall that
the average degree in a tree is a constant, depending only in the number of vertices. On the other hand, that the fraction of
nodes with large degree increases with dimension, suggests that the average of a power greater than 1 of the node degrees
in the MSTmight capture the difference between dimensions. We are thus motivated to consider the following estimator of
intrinsic dimension:

Mn := M(Xn) :=
1
n

n
i=1

(deg(Xi))
2. (6)

Fig. 2 shows average values ofMn for different dimensions, up to 12. For each dimension, the average is obtained from a set
of 100 Mn values computed on independent samples of size n = 1000 from the d-dimensional Uniform distribution. It is
clear that the mean of this random variable behaves monotonically with dimension in the range considered.
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Fig. 2. AverageMn as function of dimension.

Mutual neighbor and neighbor sharing probabilities are studied by Schilling [26] in connection with test statistics for
the multivariate two-sample problem. Schilling shows that these probabilities, for samples from continuous distributions,
converge to limits that do not depend on the particular density producing the sample. In particular, the limits of mutual
neighbor probabilities (for samples from continuous distributions in Euclidean space) depend only on the dimension of the
support of the data. This fact motivates our third estimator of dimension identification, defined as follows.

The sphere of influence graph, studied, for instance, in [19], is a proximity graph defined as follows: For each sample
point, Xi, consider the closed ball Bρ(i)(Xi) with center Xi and radius ρ(i) equal to the distance between Xi and its nearest
neighbor in the sample. The sphere of influence graph S1 := S1(Xn) has the sample Xn as its vertex set, and an edge exists
between Xi and Xj iff the corresponding nearest neighbor balls intersect, that is, iff ∥Xi −Xj∥ ≤ ρ(i)+ρ(j). We shall consider
a generalization of the sphere of influence graph, as follows. Let Sk, called the k-sphere of influence graph, be defined in the
same way as S1 but instead of ρ(i), we shall use ρk(i), defined as the distance between Xi and its k-th nearest neighbor in
the sample. That is, an edge exists between Xi and Xj in Sk if ∥Xi − Xj∥ ≤ ρk(i) + ρk(j). This is a way of enriching the sphere
of influence graph, by adjoining more edges to it. We define a third graph theoretical intrinsic dimension statistic in the
context of Sk. Let Ni,j denote the number of sample points, other than Xi and Xj, in the intersection Bρk(i)(Xi) ∩ Bρk(j)(Xj). Ni,j
is the number of neighbors, among the k-nearest, that the points Xi and Xj share. A similar intuition to the one motivating
the consideration of r j,k, leads us to consider the statistic

Uk
n := Uk(Xn) :=

1
n


i<j

Ni,j. (7)

The intuition is that, as the dimension grows, every point is more likely to be closer to any other point in the sample, in
terms of length of the connecting path in Gk, and thus, the expected number of neighbors shared by a given pair of data
points, should grow with dimension. Although (7) suggests that the computation of Uk

n has quadratic complexity in the
sample size, it turns out to be easy to compute, once the k-th nearest neighbor graph has been created, with computational
complexity O(nk), as follows. Suppose we have a n × k table that contains the identities (indices), for each i ≤ n, of the k
nearest neighbors of Xi in the sample. One pass through this table is enough to compute, for each Xi, the random variable

ck(Xi, Xn) := card{j ≤ n : Xi is one of the k nearest neighbors of Xj in the sample Xn}.

Since each sample point Xl, 1 ≤ l ≤ n, appears in a total of


ck(Xl,Xn)
2


summands Ni,j, we get that Uk

n in (7) can be computed
as

Uk(Xn) =
1
n

n
i=1


ck(Xi, Xn)

2


. (8)

It follows that the computational complexity ofUk
n is the same as that of constructing the k-th nearest neighbor graph, which

is less than quadratic, according to Friedman and Rafsky [8].
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Fig. 3. Average U1
n as function of dimension.

Fig. 3 shows the averages of U1
n := U1

n (Xn) values, for dimensions 2–12. As in Fig. 2, for each dimension, the U1
n are

computed on 100 samples of size n = 1000, from the Uniform distribution on the d-dimensional unit cube. Again, we see
a clear tendency of the statistic U1

n (·) to grow nearly linearly with dimension, suggesting that it might be appropriate for
the identification of intrinsic dimension. For values of k larger than 2, (experiments not included here) a similar behavior of
Uk
n(Xn) is observed, as a function of dimension.
Figs. 2 and 3 and the results in [4] suggest that, at least for a relevant set of dimensions, a linear dependence can be

established between all the graph theoretical statistics presented above and the underlying data dimension. In each case, one
could find a linear formula to predict the dimension from the value of the graph theoretical statistic.We shall not pursue this
line of research, since itwould not take into consideration the variability that each graph theoretical statistic presents in each
dimension, but only the average value of the statistics in the different dimension. To take advantage of all the information
obtained from simulations, including estimated means and variances, and the information provided by theoretical results
(Section 4) regarding the asymptotic Gaussian distribution of the statistics, it seems more sensible to employ a Bayesian
decision theoretic procedure, described below, since it is known to converge to the smallest possible error rate based on a
given statistic (see Chapter 2 in [6]). A drawback of our approach is the need to estimate parameters of the distribution of
the statistic to be used, but this is a one-time cost, since simulations can be performed for the Uniform distribution on the
d-dimensional unit cube and, by the asymptotic theory, the parameters estimated will be approximately valid for any data
distribution satisfying the assumptions of the results in Section 4. Another possible objection to our proposed methodology
is the reliance on asymptotic results, but this is essentially true of all the methods currently available for this problem. For
instance, the statistic of Levina and Bickel [17] is known to be biased for small sample size, but asymptotically unbiased,
and its use can be justified by the existence of a strong law of large numbers (Theorem 2.1 in [22]). Similarly the method
of Costa, Girotra and Hero [5] is supported by a strong law of large numbers for the total length statistic Lγ ,k(Xn). Perhaps
the one exception to this dependence on asymptotics is the method of Farahmand, Szepesvári and Audibert [7], in which
bounds for the probability of error in the estimation ofm are provided for finite n, although the values of n required for the
bounds to be valid depend on constants that are not known.

We shall now describe the setup for the approximate Bayesian estimators to be used with each of the three graph
theoretic statistics described above (the reach statistic, r j,k, the average of squared degrees in the MST, Mn, and the mutual
neighbors statistic, Uk

n ). In the context of manifolds we prove central limit theorems only for the first and third of these
statistics, though we shall assume that a Gaussian approximation is valid for all of them. In the remainder of this section,
Sn := Sn(Xn) denotes any of these graph theoretic statistics. When the data live in an m-dimensional C1 submanifold of
Rd, we assume that Sn(Xn) converges in L2 to a limit, µ(m), that does not depend on the particular density producing the
sample, but only onm. We assume further that

nVar(Sn(Xn)) → σ 2(m), as n → ∞, (9)
for a positive constant σ 2(m) depending only onm. Finally, we assume that

√
n(Sn(Xn)) − E(Sn(Xn))

D
−→ Z, (10)
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Table 1
Estimated parameters for graph theoretic statistics, n = 1000.

Dimension r2,4 Mn U1
n

µ̃d σ̃d/
√
n µ̃d σ̃d/

√
n µ̃d σ̃d/

√
n

2 12.58 0.161 4.452 0.0172 0.319 0.0176
3 15.02 0.202 4.637 0.0219 0.360 0.0235
4 17.01 0.249 4.758 0.0303 0.392 0.0233
5 18.75 0.273 4.860 0.0341 0.425 0.0251
6 20.27 0.312 4.940 0.0434 0.452 0.0275
7 21.76 0.334 5.010 0.0429 0.489 0.0310
8 23.14 0.346 5.081 0.0405 0.529 0.0303
9 24.48 0.398 5.155 0.0472 0.571 0.0342

10 25.65 0.404 5.220 0.0504 0.608 0.0419
11 26.98 0.399 5.302 0.0633 0.645 0.0452
12 28.13 0.487 5.371 0.0648 0.690 0.0459

for a Gaussian random variable Z with mean 0 and variance σ 2(m). At least in the case of r j,k and Uk
n these assumptions are

supported by the results in Section 4. We consider a finite set F of candidate values for the intrinsic dimension m. For each
dimension j in F , we produce, by simulation, L samples of size n (large) from the Uniform distribution on the unit j-cube.
For each sample generated, the statistic Sn is computed, and from the L values produced, we obtain the natural estimators
µ̃j and σ̃ 2(j) of the parameters µj and σ 2(j), for each j in F . In the Monte Carlo experiments used for parameter estimation
and described in Section 3, we used F = {2, 3, . . . , 12}, n = 1000 and L = 100 for each statistic.

Suppose now a new data sample, of size n′, assumed to live in anm-dimensional submanifold of Rd is presented and the
value ofm for these data is to be estimated. Based on the simulation results, the density of Sn(Xn) in dimension j, evaluated
at s ∈ R, is approximated as f̃j(s), the Gaussian density with mean µ̃j and variance σ̃ 2(j)/n′. Then, we compute the value
of the graph theoretic statistic on the new data set, Sn′ . Elementary Bayesian Decision Theory tells us that, assuming equal
a priori probabilities for all the dimensions in F , the a posteriori probabilities, P[j | Sn′ ] corresponding to the dimensions
considered, are

P[j | Sn′ ] =
f̃j(Sn′)

l∈F
f̃l(Sn′)

for j ∈ F . (11)

Choosing the value of j that maximizes (11) as the estimator of intrinsic dimension, corresponds to employing an
approximation to the Bayesian Classifier, which is the best possible procedure based on Sn′ (see Chapter 2 in [6], for instance).
Still, since the intrinsic dimension is a numerical (non categorical) variable, it seems sensible to combine the information in
the a posteriori probabilities and to use, as an estimator, the a posteriori expected value of the intrinsic dimension, given by

m̃ := round



j∈F

j f̃j(Sn′)
j∈F

f̃j(Sn′)

 . (12)

Formula (12) is the one we shall use for our graph-theoretic estimation of intrinsic dimension; a proof of consistency of this
method, valid when Sn is r j,k or Uk

n , is given in Theorem 4.

3. Monte Carlo evaluation of procedures for intrinsic dimension identification

The simulations described in the present section were carried out on a laptop computer using the statistical language R.
We report first the result of the Monte Carlo experiments carried out for parameter estimation for the graph theoretic

statistics r j,k,Mn, and Uk
n . For the reach statistic r j,k, the parameters were set to k = 4 and j = 2, while for Uk

n we worked
with k = 1 (the statistic Mn does not require choice of parameters). For each statistic and each dimension j in F = {2,
3, . . . , 12},M = 100 samples of size n = 1000 were generated from the Uniform distribution on the j-dimensional unit
cube. For each sample, the statistic considered is computed, and from theM values available the sample mean is used as the
estimator µ̃j of the mean, while, if s2 denotes the sample variance of the statistic values observed, σ̃ 2(j) = n s2 is used as
estimator of σ 2(j) in (9). Table 1 presents the results of this estimation for the three graph theoretical statistics. The numbers
in columns µ̃d, for Mn and U1

n , are the ones plotted in Figs. 2 and 3. We can see in the µ̃d values, for the three statistics in
this table, a nearly linear growth of the means. On the other hand, the curse of dimensionality manifests itself, in Table 1, in
that the standard deviations of the statistics tend to grow with dimension, making it more difficult to distinguish between
consecutive dimensions when they are larger.

To evaluate the performance of the graph theoretic methods proposed, a Monte Carlo comparison was carried out, in
which we included the recently developed nearest-neighbor methods described in Section 1 and a set of manifolds with
dimensionsm varying from 2 to 9, most of which have appeared in similar studies in the literature:
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Table 2
Estimated MSE for Costa et al. estimator.

Data set n = 250 n = 500 n = 1000

S3 0.62 (1) 0.665 (1) 0.659 (1)
S6 7.311 (9) 7.096 (9) 6.97 (9)
S9 25.703 (25) 24.298 (25) 24.205 (25)
P3 0.62 (1) 1.001 (1) 0.85 (1)
P6 13.838 (16) 11.445 (9.467) 10.032 (9)
P9 46.98 (49) 40.186 (37.733) 35.147 (36)
Swiss Roll 0.059 (0) 0.053 (0) 0.047 (0)
Möbius 0.043 (0) 0.099 (0) 0.147 (0)

Table 3
Estimated MSE for Farahmand et al. estimator.

Data set n = 250 n = 500 n = 1000

S3 0.298 (0.5) 0.287 (0.567) 0.286 (0.633)
S6 0.331 (0.5) 0.35 (0.667) 0.566 (1)
S9 0.085 (0.067) 0.098 (0.1) 0.105 (0.1)
P3 0.298 (0.5) 0.048 (0) 0.086 (0)
P6 1.904 (1.5) 0.871 (1) 0.311 (0.733)
P9 16.041 (16.3) 8.97 (9) 5.245 (4.167)
Swiss Roll 1.025 (1) 1.017 (1) 0.722 (1)
Möbius 0.624 (1) 0.224 (0.333) 0.122 (0)

(i) Möbius band data (as considered in [7]). This is a 2-dimensional manifold data set produced as follows: For
U ∼Unif(−1/2, 1/2) andV ∼ Unif(0, 2π), let the coordinates ofX ∈ R3 be given byX1 = (1+U cos(5V )) cos(V ), X2 =

(1 + U cos(5V )) sin(V ) and X3 = U sin(5V ).
(ii) The ‘‘Swiss Roll’’ data, introduced in Tenenbaum, de Silva and Langford [30] and considered in several other articles, is

another 2-dimensional manifold data set that is obtained by generating first a bivariate mixture of Gaussian sample,
and then ‘‘twisting’’ the sample into R3 by applying the following transformation to each bivariate datum (Z1, Z2):
X1 = Z1 cos(Z1), X2 = Z2 and X3 = Z1 sin(Z1).

(iii) Uniform data in the unit sphere Sm. This data was generated form = 3, 6 and 9.
(iv) Random data in anm-dimensional paraboloid, Pm. These data points fall in the manifold

xm+1 = x21 + · · · + x2m (13)

and are obtained by generating first (X1, . . . , Xm) ∈ Rm with the Multivariate Burr distribution with parameter α = 1
(see [13, Chapter 9]). This means that, for i ≤ m, Xi = (1 + Ei/E0)−1, where E0, E1, . . . , Em are i.i.d. exp(1) variables.
After the coordinates (X1, . . . , Xm) are generated, Xm+1 is computed according to (13). These data were generated for
m = 3, 6 and 9. The idea in considering the paraboloid data is to have, in the larger dimensions considered, an example
with non-constant curvature, in contrast to the unit sphere data.

As in [7], after generating the manifold samples just described, redundant coordinates were added to the data by adding the
coordinates sin(Xi) and X2

i , for each coordinate Xi. In this manner, although the data actually live in a manifold of dimension
m, the dimension identification procedures shall be implemented with data in R3(m+1).

The nearest neighbor methods considered in this comparison, with their parameters, are the following:

LB: The statistic of Levina and Bickel, (1), with k = 5.
CGH: Costa, Girotra and Hero’s method, with γ = 1, k = 5, Q = 3, p1 = ⌈n/4⌉, p2 = ⌈n/2⌉, p3 = n and N = 0.1n. See the

explanation of the parameters in the lines following (2).
FSA: The estimator of Farahmand, Szepesvári and Audibert, (4), with k = 10.
SRH: Sricharan, Raich and Hero’s estimator, (5), with k1 = 5, k2 = 10,N = ⌊n/5⌋ and M = n − N .

These nearest neighbor methods are compared to the approximate Bayesian classifiers corresponding to the graph
theoretic procedures proposed here. The Bayesian classifiers are set up with the estimated mean and variance values given
in Table 1 and the choice of parameters made for that table. For comparison purposes, for each method of classification,
each data type, each value of the intrinsic dimension, m, and each sample size, n = 250, 500 and 1000, 30 samples were
generated and presented to the dimension estimator. For each estimator, the final value is obtained by rounding, to the next
integer, a value produced by the estimator formula.

Tables 2–8 present the mean squared errors (MSEs) for the different estimators, before and after rounding. The value
in parenthesis is the MSE for the rounded (integer) value of the estimator. In these MSE tables, we observe the following:
The estimator of Costa, Girotra and Hero (CGH) presents a very good behavior in identification of dimension 2, in which
case the MSE for the rounded value of the estimator is 0 for both 2-dimensional data distributions and all sample sizes,
but its performance deteriorates rapidly with increasing dimension, and for m = 9 the estimator presents a bias of about
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Table 4
Estimated MSE for Levina–Bickel estimator.

Data set n = 250 n = 500 n = 1000

S3 0.016 (0) 0.009 (0) 0.007 (0)
S6 0.115 (0.133) 0.09 (0.033) 0.037 (0)
S9 1.056 (1.067) 0.612 (0.767) 0.468 (0.767)
P3 0.016 (0) 0.033 (0) 0.021 (0)
P6 2.362 (2.8) 1.634 (1) 1.101 (1)
P9 13.007 (13.433) 9.019 (8.833) 6.681 (7.667)
Swiss Roll 0.277 (0.533) 0.261 (0.333) 0.285 (0.367)
Möbius 0.009 (0) 0.004 (0) 0.002 (0)

Table 5
Estimated MSE for Sricharan et al. estimator.

Data set n = 250 n = 500 n = 1000

S3 0.112 (0.167) 0.096 (0.1) 0.071 (0)
S6 0.154 (0.233) 0.19 (0.333) 0.15 (0.167)
S9 0.401 (0.567) 0.286 (0.367) 0.164 (0.133)
P3 0.112 (0.167) 0.037 (0.033) 0.012 (0)
P6 5.317 (4.967) 2.987 (3.3) 1.592 (1.3)
P9 29.097 (28.733) 18.592 (18.167) 11.464 (10.867)
Swiss Roll 0.184 (0.3) 0.144 (0.167) 0.123 (0.033)
Möbius 0.297 (0.5) 0.095 (0.067) 0.039 (0)

Table 6
Estimated MSE for reach estimator, r2,4 .

Data set n = 250 n = 500 n = 1000

S3 0.003 (0) 0.009 (0.033) 0 (0)
S6 0.672 (0.867) 0.454 (0.633) 0.036 (0.033)
S9 6.558 (6.667) 4.049 (4) 3.722 (4)
P3 0.003 (0) 0 (0) 0 (0)
P6 3.734 (3.767) 1.075 (1.1) 0.122 (0.2)
P9 26.792 (26.467) 13.906 (14.367) 4.324 (4.333)
Swiss Roll 0.31 (0.333) 0.166 (0.2) 0.064 (0.067)
Möbius 0.098 (0.133) 0 (0) 0 (0)

Table 7
Estimated MSE for estimatorMn .

Data set n = 250 n = 500 n = 1000

S3 0.186 (0.267) 0.015 (0.033) 0.001 (0)
S6 2.284 (2.333) 1.323 (1.4) 0.801 (0.967)
S9 12.571 (12.767) 9.827 (10.2) 7.577 (8.367)
P3 0.186 (0.267) 0.014 (0) 0 (0)
P6 1.107 (1.167) 0.435 (0.6) 0.388 (0.467)
P9 5.393 (5.567) 1.2 (1.467) 0.542 (0.567)
Swiss Roll 0.078 (0.1) 0.042 (0.067) 0 (0)
Möbius 0.186 (0.2) 0 (0) 0 (0)

Table 8
Estimated MSE for mutual neighbors estimator, U1

n .

Data set n = 250 n = 500 n = 1000

S3 0.709 (0.667) 0.128 (0.167) 0.164 (0.2)
S6 2.388 (2.4) 2.231 (2.033) 1.728 (1.8)
S9 10.005 (9.967) 11.877 (12.067) 10.906 (10.8)
P3 0.709 (0.667) 0.371 (0.367) 0.235 (0.333)
P6 1.09 (1.067) 0.579 (0.633) 0.365 (0.567)
P9 4.293 (4.733) 3.185 (3.4) 2.717 (2.433)
Swiss Roll 1.104 (1.233) 0.461 (0.5) 0.146 (0.167)
Möbius 1.398 (1.5) 0.241 (0.333) 0.058 (0.1)

5 units for the sphere data and even more bias for the paraboloid data. This, together with the fact that this estimator is,
computationally, by far the most expensive of all considered here, due to the intensive resampling required, makes it very
difficult to recommend its use. The FSA estimator has a very good performance for the unit sphere data, even for the larger
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value of m, while its performance deteriorates with dimension for the Pm data, reaching a standard error of about 4 units
for the P9 data for n = 250, although we observe, as well, that this performance tends to improve with sample size. The
FSA estimator is not as good on the 2-dimensional distributions considered, presenting an error of about one unit on the
Swiss Roll data for all sample sizes. For the distributions considered, the LB estimator has, in general, a similar performance
to FSA, being superior for the S3 and Möbius band data, for which LB is practically perfect, and being inferior to FSA for the
S9 data. The estimator of Sricharan et al. presents a behavior similar to those of the FSA and LB statistics, with a tendency
to perform slightly below (with a larger MSE) the LB statistic across the table. The reach statistic, for the 2-dimensional
manifolds, performs fairly well, better than FSA and SRH, and similar to LB. With respect to Sm and Pm, r j,k does well for
m = 3, but its performance deteriorates with growing m, reaching a standard error of about 2.5 units for S9 and of about
5 units for P9 for sample size n = 250, but we observe that these errors tend to improve rapidly with sample size in both
cases (S9 and P9). For the 2-dimensional manifolds, the Mn estimator displays a good behavior, being better than FSA and
SRH and similar in mean squared error to LB and r j,k. For the unit sphere data, Mn performance is inferior to that of all
the nearest neighbor methods (except CGH), while for the Pm data, Mn displays consistently, the smallest errors of all the
methods considered, suggesting that it might be a very good method in the case of non-constant curvature manifolds. The
Mutual Neighbor method, for the 2-dimensional manifolds, displays a better behavior than the FSA statistic, but is inferior
to the other nearest neighbor methods, although Uk

n ’s performance improves rapidly with sample size in this case. For Sm

and Pm,Uk
n ’s offers a behavior similar to that of Mn, being inferior to the nearest neighbor methods (except CGH) for the

unit sphere data, while being clearly better than those methods for the paraboloid data.
A conclusion that can be extracted from this comparison is that no clear winner emerges. It would appear that the graph

theoretic methods could have a certain edge in the case of manifolds of non-constant curvature.

4. Limit theory for dimension estimators

In this section, we establish weak laws of large numbers, variance asymptotics, and central limit theorems for the
statistics Mn and Uk

n , k ∈ N, as n → ∞. The corresponding theory for r j,k follows the pattern of that for Uk
n , as explained

in the remarks after Theorem 1. To obtain the limit theory for Uk
n , we shall slightly extend some of the general results of

Penrose and Yukich [22].

4.1. Statement of results

For all x ∈ Rd, k = 1, 2, . . . and all locally finite point sets X ⊂ Rd, we put as in Section 1

ck(x, X) := card{y ∈ X : x is one of the k nearest neighbors of y in X}.

Let

ζk(x, X) :=


ck(x, X)

2


. (14)

Recalling that Xn := {Xi}
n
i=1, we have Uk

n = n−1n
i=1 ζk(Xi, Xn).

As in [22], let M := M(m, d) be the class of all m-dimensional C1 submanifolds of Rd which are also closed subsets of
Rd. Given M ∈ M, let Pc(M) denote the class of probability density functions κ on M whose support K(κ) is a compact C1

submanifold-with-boundary of M, and which are bounded away from zero and infinity on their support.
Let H denote a homogeneous rate one Poisson point process on Rm. Say that a functional ξ defined on pairs (x, X), with

x ∈ Rm and X locally finite in Rm, is translation invariant if ξ(x, X) = ξ(x + y, X + y) for all y ∈ Rm. Letting 0 denote a
point at the origin of Rm, we put, for allm ∈ N,

V ξ (m) := E[ξ(0, H)2] +


Rm

{Eξ(0, H ∪ {z})ξ(z, H ∪ {0}) − (Eξ(0, H))2}dz (15)

and

∆ξ (m) := Eξ(0, H) +


Rm

E[ξ(0, H ∪ {z}) − ξ(0, H)]dz. (16)

For all κ ∈ Pc(M) and ξ we define

σ 2(ξ , κ) :=


M

V ξ (κ(x))κ(x)dx −


M

∆ξ (κ(x))κ(x)dx
2

, (17)

provided that both integrals in (17) exist and are finite. Put

σ 2(ξ) := V ξ (m) − (∆ξ (m))2.
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The scalar V ξ (m) may be interpreted as the mean pair correlation function for the functional ξ on homogeneous Poisson
points H whereas we may view ∆ξ (m) as an expected ‘‘add-one cost’’.

We have the following limit theory for the dimension estimator Uk
n ; N(0, σ 2) denotes a mean zero normal random

variable with variance σ 2.

Theorem 1. Let M ∈ M and let κ ∈ Pc(M). If Xi, i ≥ 1, are i.i.d. with density κ , then, for all k ∈ N, we have in L2 and almost
surely,

lim
n→∞

Uk
n = Eζk(0, H). (18)

If, additionally, κ is a.e. continuous, then

lim
n→∞

n Var[Uk
n ] := σ 2(ζk) := V ζk(m) − (∆ζk(m))2, (19)

and as n → ∞,

n1/2(Uk
n − EUk

n)
D

−→ N(0, σ 2(ζk)). (20)

Remarks. (i) The limits in (18) and (19) are independent of the density κ of the underlying point set. (ii) The proof of
Theorem 1 shows that the statistic r j,k also satisfies the limit theory of Theorem 1, with ζk replaced by the functional

rj,k(x, X) := card{y ∈ X : y ≠ x, y is reached in l steps from x; l ≤ j}.

(iii) Positivity of σ 2(ζk) and σ 2(rj,k) follows as in the proof of the last part of Theorem 2.1 of [19].

For all x ∈ Rd and all locally finite point sets X ⊂ Rd, define the functional

ϕ(x, X) :=


deg

MST(X)

(x)
2

, (21)

where we recall that degMST(X)(x) denotes the degree of the node x in the graph of theminimal spanning tree onX. We have
Mn := M(Xn) := n−1n

i=1 ϕ(Xi, Xn).

Theorem 2. Assume that Xi, i ≥ 1, have density κ on Rm. Then in L2

lim
n→∞

Mn = Eϕ(0, H). (22)

If the density κ is uniform on [−1, 1]m then there is a σ 2(m), such that

lim
n→∞

n Var[Mn] = σ 2(m) (23)

and, as n → ∞,

n1/2(Mn − EMn)
D

−→ N(0, σ 2(m)). (24)

Remark. If M ∈ M and κ ∈ Pc(M), then no limiting theory is currently available for Mn, but we conjecture that the limit
theory of Theorem 1 applies to Mn, with ζk replaced by ϕ. The method of proof shows that Theorem 2 also holds if the data
Xn belongs to any affine subspace of Rd.

4.2. A general result

We first slightly extend some general results of [22]. This goes as follows. For all r ∈ (0, ∞) and x ∈ Rd, let Br(x) be the
Euclidean ball of radius r centered at x. Let F ⊂ Rl, l ∈ N, be a locally finite set. For all x ∈ Rl, j ∈ N, we letNj(x, F) be the set
of points in F having x as one of their j nearest neighbors in {x} ∪ F . Let nj(x, F) be the maximum of the distances between x
and the elements of Nj(x, F), i.e.,

nj(x, F) := max{|x − w| : w ∈ Nj(x, F)}.

If Nj(x, F) = ∅, then put nj(x, F) := diam(F).
Given k ∈ N, let Ξ(k) be the class of translation and rotation invariant functionals ξ such that (i) for all x, X with

card(X \ {x}) ≥ k, we have

ξ(x, X) = ξ(x, X ∩ Bnk(x,X)(x))
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and (ii) for all n, Lebesgue-almost every (x1, . . . , xn) ∈ (Rm)n (with Rm embedded in Rd) is at a continuity point of the
mapping from (Rd)n → R, given by

(x1, . . . , xn) → ξ(0, {x1, . . . , xn}).

The functional ζk, defined at (14), belongs to the class Ξ(k). Indeed, the continuity criteria (ii) hold when the points
(x1, . . . , xn) have distinct interpoint distances.

Next, for x ∈ Rl and j ∈ {0, 1, 2, . . .}, let Nj(x, F) be the Euclidean distance between x and its jth nearest neighbor in
F \ {x}, i.e.

Nj(x, F) := inf{r ≥ 0 : card(F ∩ Br(x) \ {x}) ≥ j} (25)

with the infimum of the empty set taken to be +∞. In particular, N0(x, F) = 0. Given k ∈ Z, let Ξ0(k) be the class of
translation and rotation invariant functionals, ξ , such that (i) for all x, X with card(X \ {x}) ≥ k, we have

ξ(x, X) = ξ(x, X ∩ BNk(x,X)(x))

and (ii) for all n, Lebesgue-almost every (x1, . . . , xn) ∈ (Rm)n (with Rm embedded in Rd) is at a continuity point of the
mapping from (Rd)n → R, given by

(x1, . . . , xn) → ξ(0, {x1, . . . , xn}).

When ξ ∈ Ξ0(k), M ∈ M, and κ ∈ Pc(M), then under moment conditions on ξ , [22] establishes weak laws of large
numbers, variance asymptotics, and central limit theorems for

Hξ
n (Xn) :=

n
i=1

ξn(Xi, Xn),

where ξn(x, X) := ξ(n1/dx, n1/dX).
Here we shall show that if ξ ∈ Ξ(k), then a similar limit theory holds for Hξ

n (Xn). Given i = 1, 2, 3, recall that Si is the
collection of all subsets of K(κ) of cardinality at most i, including the empty set. Consider the followingmoment conditions
on ξ :

sup
n

E|ξn(X1, Xn)|
p < ∞, (26)

sup
n≥1,x∈K(κ),A∈S3

sup
(n/2)≤ℓ≤(3n/2)

E|ξn(x, Xℓ ∪ A)|p < ∞ (27)

and

sup
λ≥1,x∈K(κ),A∈S1

E|ξλ(x, Pλ ∪ A)|p < ∞. (28)

Theorem 3 (Limit Theory for Hξ
n (Xn), ξ ∈ Ξ(k)). Let M ∈ M, κ ∈ Pc(M), k ∈ N, and put q = 1 or q = 2. Let ξ ∈ Ξ(k) and

suppose there exists p > q such that (26) holds. Then as n → ∞ we have Lq convergence

n−1Hξ
n (Xn) →


M

E[ξ(0, Hκ(x))]κ(x)dx. (29)

If also (27) holds for some p > 5, then (29) holds a.s. If, additionally, κ is a.e. continuous, and if ξ satisfies (27) and (28) for some
p > 2, then σ 2(ξ , κ) < ∞ and

lim
n→∞

n−1 Var[Hξ (Xn)] = σ 2(ξ , κ)

and as n → ∞,

n−1/2(Hξ
n (Xn) − EHξ

n (Xn))
D

−→ N(0, σ 2(ξ , κ)).

Remark. We say that ξ is homogeneous of order zero if, for all scalars a > 0, we have ξ(x, X) = ξ(ax, aX). In this case the
constants in Theorem 3 simplify, since

M

E[ξ(0, Hκ(x))]κ(x)dx = E[ξ(0, H1)] (30)

and σ 2(ξ , κ) := σ 2(ξ) := V ξ (m) − (∆ξ (m))2. The functionals ζk and ϕ are both homogeneous of order zero.
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Proof of Theorem 3. We first recall a definition (see Definition 5.1 in [22]). Recall that if ξ is continuous if for any linear
F : Rm

→ Rd of full rank, for almost all z ∈ Rm both F(H) and F(H ∪ {z}) lie a.s. at continuity points of ξ(0, ·) with respect
to the topology Td in [22]. We first give some definitions, following closely [22]. Assume M ∈ M and κ ∈ P(M) are given,
and recall K := K(κ). Suppose k ∈ N is given, along with the density κ . For x ∈ K and locally finite X ⊂ K define

Rλ(x, X) :=


nk(λ

1/mx, λ1/mX) if card(X \ {x}) ≥ k
λ1/m diam(K) otherwise.

Then R := Rλ(x, X) is a radius of stabilization for any ξ ∈ Ξ(k), in the following sense: for all finiteA ⊂ (K \Bλ−1/mR(x)),
we have

ξλ


x, (X ∩ Bλ−1/mR(x)) ∪ A


= ξλ


x, X ∩ Bλ−1/mR(x)


. (31)

Recall that Xn := {Xi}
n
i=1 and for λ ∈ [1, ∞), let Pλ denote the Poisson point process on M having intensity density λκ(·),

that is EPλ(dx) = λκ(x)dx. Given ϵ > 0 and t > 0, we define the tail probabilities for Rλ denoted by τ(t) and τϵ(t), for
Poisson input Pλ and binomial input Xn, respectively, as follows:

τ(t) := sup
λ≥1

ess sup
x∈K

P[Rλ(x, Pλ) > t]

τϵ(t) := sup
λ≥1,n∈N∩((1−ϵ)λ,(1+ϵ)λ), A∈S2

ess sup
x∈K

P[Rλ(x, Xn ∪ A) > t]

where the ess sup denotes essential supremum with respect to the measure κ(x)dx.

Definition 1. Given k, we say that all ξ ∈ Ξ(k) are exponentially stabilizing for κ if lim supt→∞ t−1 log τ(t) < 0. We say
that all ξ ∈ Ξ(k) are binomially exponentially stabilizing for κ if there exists ϵ > 0 such that lim supt→∞ t−1 log τϵ(t) < 0.

To prove Theorem 3, by the remark at the end of Section 6 of [22], it suffices to show that ξ ∈ Ξ(k) is continuous,
exponentially stabilizing, and binomially exponentially stabilizing. We prove continuity by following verbatim the proof of
Lemma 6.1 in [22], replacing Nk(0, F(H)) in that proof by nk(0, F(H)).

We now show that ξ is exponentially stabilizing and binomially exponentially stabilizing in the sense of Definition 1.
Let C0

1 , . . . , C0
J be a finite collection of open cones in Rd, each with vertex at the origin and angular radius π/6, so that

Rd
\ {0} = ∪

J
j=1 C

0
j . For 1 ≤ j ≤ J , let Cj be the translate of C0

j with its vertex at x. Put Kj := Cj ∩ M.
Elementary geometry shows that if card(Kj ∩ Bt(x) ∩ Pλ) ≥ k + 1 for all 1 ≤ j ≤ J , then points outside Bt(x) will not

affect the value of ξ(x, Pλ). Let Tλ(x, Pλ) be the minimum ρ such that each Kj ∩ Bλ−1/mρ(x) contains at least k + 1 points
from Pλ, that is

Tλ(x, Pλ) :=


inf{ρ > 0 : card(Kj ∩ Bλ−1/mρ(x) ∩ Pλ) ≥ k + 1} if card(Kj ∩ Pλ) > k
λ1/m diam(K) otherwise.

Then Rλ(x, Pλ) ≤ Tλ(x, Pλ) and so Tλ(x, Pλ) is a radius of stabilization for ξ . Also, Tλ(x, Pλ) exceeds t only when there
is a j, 1 ≤ j ≤ J , such that

card(Kj ∩ Bλ−1/mt(x) ∩ Pλ) ≤ k.

The number of points in Kj∩Bλ−1/mt(x)∩Pλ is Poisson distributedwith parameter b(t) := b(t, x, λ) equal to the λκ measure
of Bλ−1/mt(x) ∩ M. By Lemma 4.3 in [22], there is a constant C1 ∈ (0, ∞) such that, uniformly in λ ∈ [1, ∞), x ∈ K , and
t ∈ (0, λ1/m diam(K)), we have b(t) ≥ C−1

1 tm.
By bounds for the Poisson distribution (e.g. Lemma 1.2 of [18]), there is a constant C2 ∈ (0, ∞) such that for t ∈

(0, λ1/m diam(K)) we have uniformly in j that

P[card(Kj ∩ Bλ−1/mt(x) ∩ Pλ) ≤ k] = P[Pois(b(t)) ≤ k] ≤ kC2 exp(−C−1
2 tm).

Thus for t ∈ (0, λ1/m diam(K)) we have

P[Tλ(x, Pλ) > t] ≤ C3(k) exp(−C−1
2 tm).

For t ∈ (λ1/m diam(K), ∞) this also holds since P[Tλ(x, Pλ) > t] = 0 in this case. This shows that ξ stabilizes exponentially
fast on Poisson input. Modifications of these arguments give that ξ stabilizes exponentially fast on binomial input. This
completes the proof of Theorem 3. �

4.3. Proof of Theorem 1

We shall deduce Theorem 1 from Theorem 3. Since Uk
n = n−1n

i=1 ζk(Xi, {Xi}
n
i=1), it suffices to show that ζk satisfies the

conditions of Theorem 3.
Note that ζk ∈ Ξ(k) and so it only remains to show that ζk satisfies the moment conditions of Theorem 3. However

this follows since ζk is deterministically bounded. Indeed, a given point in Rd is the nearest neighbor of at most a finite
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number of other points in Rd (see Lemma 8.4 of [31]). For all k ∈ N there is thus a constant Ck such that, for all x, X we have
ck(x, X) ≤ Ck, that is ζk(·, ·) ≤ C2

k /2. Applying Theorem 3 and recalling that ζk is homogeneous of order zero, we obtain
Theorem 1 as desired. �

4.4. Proof of Theorem 2

The limit (22) is an immediate consequence of the boundedness of ϕ (as noted on pp. 811–812 of Steele, Shepp and
Eddy [29]), the fact that ϕ is stabilizing as shown in Lemma 2.1 of [20], the general weak law of large numbers for sums of
stabilizing functionals, as given by Theorem 2.1 of [20], and the fact that ϕ(x, X) is homogeneous of order zero, and thus
(30) applies.

To prove (23) and (24), we proceed as follows. The proof of (24) follows from Lee [16] or [19]. We provide the details as
follows. Consider the functional

Hϕ(X) :=


x∈X

ϕ(x, X).

It will suffice to show that Hϕ satisfies the conditions of Corollary 2.1 of [19]. Since ϕ is bounded it follows that Hϕ(X) ≤

Ccard(X) and, therefore, Hϕ is polynomially bounded, that is to say there exists a constant β ∈ (0, ∞) such that, for all
finite sets X ⊂ Rd, we have

Hϕ(X) ≤ β(diam(X) + card(X))β .

Put ∆(X) := Hϕ(X ∪ {0}) − Hϕ(X). If Hλ denotes a homogeneous Poisson point process of intensity λ on Rd, then there
exist a.s. finite random variables S and ∆(∞) such that, with probability one,

∆(Hλ ∩ BS(0) ∪ A) = ∆(∞)

for all finite A ⊂ Rd
\ BS(0). This condition, known as strong stabilization of Hϕ (cf. Definition 2.1 of [19]), follows from

Kesten and Lee [15] and Lee [16]. Actually Kesten and Lee [15] show that the above condition holds if HMST(X) is the total
edge length of the minimal spanning tree on X, but the random variable S which works for HMST will also work for Hϕ .

Finally, if Xm is the point process consisting of m i.i.d. uniform random variables on [−1, 1]d, then straightforward
modifications of Kesten and Lee [15] as well as Lee [16] show that

sup
n

sup
m∈[λ/2,3λ/2]

E[∆(Xm)4] < ∞,

and so Hϕ satisfies the uniform bounded moment condition of [19]. Thus, Hϕ satisfies all of the conditions of Corollary 2.1
in [19] and so (23) and (24) follow. �

4.5. Consistency of a dimension identification procedure

To prove that the procedures for intrinsic dimension identification based on r j,k and Uk
n are consistent, we assume that

the limiting constants in the corresponding LLNs are different, for different dimensions in the range considered. Actually,
our simulations support the hypothesis that these constants are increasing with dimension. As in Section 2, let Sn := Sn(Xn)
represent one of our statistics, r j,k or Uk

n , or another graph theoretic statistic satisfying the same conditions. Let Xn denote
an i.i.d. data set obtained from a density κ with support on an m-dimensional compact submanifold-with-boundary of Rd

and assume that κ is bounded away from zero and infinity on its support. Assume that, for this kind of data Sn satisfies
a SLLN: Sn → µ(m) in L2, and almost surely, where the limit depends only on m, and the µ(m) values are different for
the different m ∈ F , F being a finite set. Assume, as well, that conditions (9) and (10) of Section 2 hold. Suppose that the
parameter estimation for the approximate Bayesian dimension identification procedure based on Sn, is made as described
in Section 2, using L samples of size n from the Uniform distribution on the unit cube for each j ∈ F and that the value of the
graph theoretic statistic, Sn′ is computed on a new data set Xn′ that satisfies the conditions for manifold data given above.
Then, we have the following.

Theorem 4. Let m∗ and m̃ denote, respectively, the actual intrinsic dimension of Xn′ and its estimator, as given by (12). Under
the conditions stated above, m̃ −→ m∗, almost surely, as L, n, n′

→ ∞.

Proof of Theorem 4. In view of formula (12), it suffices to show that, for each j ∈ F , j ≠ m∗,

f̃j(Sn′)

f̃m∗(Sn′)
→ 0, almost surely, as n, n′, L → ∞.

Now, for each dimension j ∈ F , the estimator, µ̃(j), is converging a.s. to E(Sn) for j-dimensional unit cube data, as L → ∞.
Then, using the L2 convergence of Sn toµ(j), we have that µ̃(j) → µ(j), a.s., as L, n → ∞. On the other hand, both σ̃ 2(j) and
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σ̃ 2(m∗) are a.s. consistent for their estimated parameters, as n, L → ∞ and then, the ratio σ̃ 2(j)/σ̃ 2(m∗) will almost surely,
be bounded away from zero and ∞ for large L and n. Applying the definition of f̃j, we have

f̃j(Sn′)

f̃m∗(Sn′)
=

σ̃ (m∗)

σ̃ (j)
exp


n′

2


(Sn′ − µ̃(m∗))2

σ̃ 2(m∗)
−

(Sn′ − µ̃(j))2

σ̃ 2(j)


. (32)

Using both the L2 and almost sure convergence to the mean, we have that Sn′ − µ̃(m∗) goes to zero, almost surely, as n, n′, L
go to ∞, while Sn′ − µ̃(j) converges, almost surely, to a non-zero limit. It follows that the exponent in (32) diverges to −∞,
almost surely, establishing the result. �

Remarks. The hypotheses of Theorem 4 aremet by both r j,k andUk
n , and the result is valid for the procedures based on these

statistics. The fact that n and n′ do not need to be equal for the consistency of the procedure, partially answers the comment
of Levina and Bickel [17] regarding the need of a different calibration for every sample size. It is clear, from the proof just
given, that the rounding in formula (12) does not affect the consistency of the estimator. That is, Theorem 4 holds whether
or not we use rounding in (12).
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